

MECHANICAL DATA

Dimensions in mm (inches)

SURFACE MOUNT QUAD PNP TRANSISTOR

FEATURES

- FOUR INDEPENDENT TRANSISTORS IN A 0.35 INCH SQUARE CERAMIC PACKAGE
- SURFACE MOUNTABLE
- HERMETICALLY SEALED PACKAGE
- SCREENING OPTIONS AVAILABLE

DESCRIPTION

The 2N2907AQ-LCC20 is a 20 pad, hermetically sealed, Ceramic Surface Mount Transistor array, consisting of four 2N2907A silicon PNP transistor die.

PACKAGE LCC20

Pin $1 = n/c$	Pin $6 = n/c$	Pin $11 = n/c$	Pin $16 = n/c$
Pin 2 = Collector1	Pin 7 = Emitter 2	Pin12 =Collector 3	Pin 17 = Emitter 4
Pin $3 = n/c$	Pin 8 = Base 2	Pin13 = n/c	Pin 18 = Base 4
Pin 4 = Base 1	Pin $9 = n/c$	Pin 14 = Base 3	Pin $19 = n/c$
Pin 5 = Emitter 1	Pin10 =Collector 2	Pin 15 = Emitter 3	Pin 20 =Collector 4

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise stated)

V_{CBO}	Collector – Base Voltage	60V
V_{CEO}	Collector – Emitter Voltage	60V
V_{EBO}	Emitter – Base Voltage	5V
$I_{\mathbb{C}}$	Collector Current	600mA
I_{V}	Isolation Voltage	500V _{DC}
P_D Total Device Dissipation @ $T_A = 25$ °C (four devices driven equally)		1W
P_D Total Device Dissipation@ $T_S^{(1)} = 25^{\circ}C$ (four devices driven equally)		2W ⁽²⁾
T_J , T_STG	Operating and Storage Junction Temperature Range	-65 to +200°C
	Soldering Temperature (vapor phase reflow for 30 sec)	215°C
	Soldering Temperaure (heated collect for 5 sec)	260°C

Semelab plc. Telephone +44(0)1455) 556565. Fax +44(0)1455) 552612.

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk

2N2907AQ-LCC20

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise stated)

	Parameter		Test Co	nditions	Min.	Тур.	Max.	Unit	
	OFF CHARACTERISTICS				·			•	
V _(BR) (CEO Collector – Emitter Sustaini	ng Voltage	$I_C = 10mA$	$I_B = 0$	60			V	
V _(BR)	CBO Collector – Base Breakdow	n Voltage	$I_C = 10\mu A$	I _E = 0	60			V	
V _{(BR)E}	_{EBO} Emitter – Base Breakdown	Voltage	I _E = 10μA	I _C = 0	5			V	
	Collector – Base Cut-off Cu	ırrent	I _E = 0	V _{CB} = 50V			10	nA	
I _{CBO}	Collector – Base Cut-on Cu			T _A = 150°C			10	μΑ	
I _{EBO}	Emitter Base Cut-off Curren	t	$I_C = 0$	$V_{EB} = 3.5V$			50	nA	
	ON CHARACTERISTICS			•					
\/	Collector Footbox Coturation	n Voltago	I _C = 150mA	$I_B = 15 \text{mA}^{(3)}$			0.4	V	
V _{CE(si}	Collector – Emitter Saturation Voltage		I _C = 500mA	$I_B = 50 \text{mA}^{(3)}$			1.60		
\/	Page Emitter Saturation V	/ - 1	I _C = 150mA	$I_B = 15 \text{mA}^{(3)}$			1.3	V	
V _{BE(sa}	at) Dase – Emiller Saluration v	Base – Emitter Saturation Voltage		$I_C = 50 \text{mA}^{(3)}$			2.6	\ \ \	
			I _C = 0.1mA	V _{CE} = 10V	75				
				V _{CE} = 10V	100	450			
h_{FE}	Forwared Current Transfer Ratio		I _C = 10mA	V _{CE} = 10V	100				
				3) V _{CE} = 10V	100	300			
				3) V _{CE} = 10V	50				
			I _C = 10mA	V _{CE} = 10V	50			1	
				$T_A = -55$ °C	50				
	SMALL SIGNAL CHARAC	TERISTICS	<u>I</u>						
hfe	Forward Current Transfer Ratio	I _C = 1mA	V _{CE} = 10V f = 1kHz		100				
Ihfel			A V _{CE} = 20V f = 100MHz		2				
C _{obo}			-			8		n.E	
		$V_{EB} = 2V$ $100kHz \le f \le 1MHz$				30		pF	
	SWITCHING CHARACTER	ISTICS					l		
t _{on}	Turn-On Time V _{CC} = 30V		′ I _C 150mA	I _{B1} = 15mA		45			
t _{off} Turn-Off Time				$I_{B1} = I_{B1} = 15 \text{mA}$		300		_ ns	

NOTES:

- 1) Ts = Substrate Temperatue that the chip carrier is mounted on.
- 2) Derate Linearly 11.4mW/°C above 25°C. This rating is proveded as an aid to designers. It is dependent upon mounting material and methods and is not measureable as an outgoing test.

3) Pulse Test Pulse Wide $\leq 300 \mu s$, Duty Cycle $\leq 2\%$

Semelab plc. Telephone +44(0)1455) 556565. Fax +44(0)1455) 552612.

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk